Подключение датчика температуры DS18B20 к Arduino.

Сегодня мы будем подключать датчик температуры DS18B20 к Arduino.

ds18b20

В настоящий момент м/с DS18B20 фирмы Dallas является наиболее распространенным и доступным цифровым датчиком температуры. Работает по протоколу 1-wire. Даташит датчика: DS18B20

Основные характеристики датчика DS18B20 :

  1. Интерфейс 1-Wire Требуется только один контакт для связи
  2. Каждое устройство имеет уникальный 64-битный серийный адрес устройства который хранится в ROM
  3. Питание датчика в диапазоне температур  от 3 вольт до 5,5 вольт, возможно паразитное питание.
  4. Диапазон измеряемых температур от -55 ° C до +125 ° C  (-67 ° F до +257 ° F)
  5. Доступен в трех вариантах корпусов 8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92

DS18B20

Между ногой DQ (данные) и VDD (+5v) требуется подключить резистор номиналом 4,7 кОм. Питание подключается к ногам VDD (+5v) и GND(-),  DQ подключаем к цифровому пину 10 на Arduino.

ds18b20_shemaЕсли вам нужно подключить несколько датчиков, то используется вот такая схема

ds18b20_multi

Даже подключив 10 датчиков, на Arduino используется все равно 1 pin!!!

С подключением разобрались. Теперь разберемся с софтом.

Есть 2 варианта заставить работать ds18b20 с Arduino

1. Вариант.

Будем использовать только библиотеку OneWire, последнюю версию которой можно скачать здесь. Плюс такой реализации – вес скетча будет меньше, наглядно видно как и какой пин дергаем. Минусы- объем кода больше, сложнее в реализации.

#include <OneWire.h>

// OneWire DS18S20, DS18B20, DS1822 Temperature Example
//
// http://www.pjrc.com/teensy/td_libs_OneWire.html
//
// The DallasTemperature library can do all this work for you!
// https://github.com/milesburton/Arduino-Temperature-Control-Library

OneWire  ds(10);  // on pin 10 (a 4.7K resistor is necessary)

void setup(void) {
  Serial.begin(9600);
}

void loop(void) {
  byte i;
  byte present = 0;
  byte type_s;
  byte data[12];
  byte addr[8];
  float celsius, fahrenheit;
  
  if ( !ds.search(addr)) {
    Serial.println("No more addresses.");
    Serial.println();
    ds.reset_search();
    delay(250);
    return;
  }
  
  Serial.print("ROM =");
  for( i = 0; i < 8; i++) {
    Serial.write(' ');
    Serial.print(addr[i], HEX);
  }

  if (OneWire::crc8(addr, 7) != addr[7]) {
      Serial.println("CRC is not valid!");
      return;
  }
  Serial.println();
 
  // the first ROM byte indicates which chip
  switch (addr[0]) {
    case 0x10:
      Serial.println("  Chip = DS18S20");  // or old DS1820
      type_s = 1;
      break;
    case 0x28:
      Serial.println("  Chip = DS18B20");
      type_s = 0;
      break;
    case 0x22:
      Serial.println("  Chip = DS1822");
      type_s = 0;
      break;
    default:
      Serial.println("Device is not a DS18x20 family device.");
      return;
  } 

  ds.reset();
  ds.select(addr);
  ds.write(0x44, 1);        // start conversion, with parasite power on at the end
  
  delay(1000);     // maybe 750ms is enough, maybe not
  // we might do a ds.depower() here, but the reset will take care of it.
  
  present = ds.reset();
  ds.select(addr);    
  ds.write(0xBE);         // Read Scratchpad

  Serial.print("  Data = ");
  Serial.print(present, HEX);
  Serial.print(" ");
  for ( i = 0; i < 9; i++) {           // we need 9 bytes
    data[i] = ds.read();
    Serial.print(data[i], HEX);
    Serial.print(" ");
  }
  Serial.print(" CRC=");
  Serial.print(OneWire::crc8(data, 8), HEX);
  Serial.println();

  // Convert the data to actual temperature
  // because the result is a 16 bit signed integer, it should
  // be stored to an "int16_t" type, which is always 16 bits
  // even when compiled on a 32 bit processor.
  int16_t raw = (data[1] << 8) | data[0];
  if (type_s) {
    raw = raw << 3; // 9 bit resolution default
    if (data[7] == 0x10) {
      // "count remain" gives full 12 bit resolution
      raw = (raw & 0xFFF0) + 12 - data[6];
    }
  } else {
    byte cfg = (data[4] & 0x60);
    // at lower res, the low bits are undefined, so let's zero them
    if (cfg == 0x00) raw = raw & ~7;  // 9 bit resolution, 93.75 ms
    else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
    else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
    //// default is 12 bit resolution, 750 ms conversion time
  }
  celsius = (float)raw / 16.0;
  fahrenheit = celsius * 1.8 + 32.0;
  Serial.print("  Temperature = ");
  Serial.print(celsius);
  Serial.print(" Celsius, ");
  Serial.print(fahrenheit);
  Serial.println(" Fahrenheit");
}

Обратите внимание на строку

OneWire  ds(10);

Здесь мы указываем пин к которому подключен датчик (в примере это цифровой  пин 10)

2. Вариант. 

Тут используем готовую библиотеку DallasTemperature. Такой вариант удобнее использовать если у вас много датчиков, сложный код, ну или просто лень вникать в работу интерфейса 1-ware.

#include <OneWire.h>
#include <DallasTemperature.h>

// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 2
#define TEMPERATURE_PRECISION 9

// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature. 
DallasTemperature sensors(&oneWire);

// arrays to hold device addresses
DeviceAddress insideThermometer, outsideThermometer;

void setup(void)
{
  // start serial port
  Serial.begin(9600);
  Serial.println("Dallas Temperature IC Control Library Demo");

  // Start up the library
  sensors.begin();

  // locate devices on the bus
  Serial.print("Locating devices...");
  Serial.print("Found ");
  Serial.print(sensors.getDeviceCount(), DEC);
  Serial.println(" devices.");

  // report parasite power requirements
  Serial.print("Parasite power is: "); 
  if (sensors.isParasitePowerMode()) Serial.println("ON");
  else Serial.println("OFF");

  //insideThermometer = { 0x28, 0x1D, 0x39, 0x31, 0x2, 0x0, 0x0, 0xF0 };
  //outsideThermometer   = { 0x28, 0x3F, 0x1C, 0x31, 0x2, 0x0, 0x0, 0x2 };

  if (!sensors.getAddress(insideThermometer, 0)) Serial.println("Unable to find address for Device 0"); 
  if (!sensors.getAddress(outsideThermometer, 1)) Serial.println("Unable to find address for Device 1"); 

  // show the addresses we found on the bus
  Serial.print("Device 0 Address: ");
  printAddress(insideThermometer);
  Serial.println();

  Serial.print("Device 1 Address: ");
  printAddress(outsideThermometer);
  Serial.println();

  // set the resolution to 9 bit
  sensors.setResolution(insideThermometer, TEMPERATURE_PRECISION);
  sensors.setResolution(outsideThermometer, TEMPERATURE_PRECISION);

  Serial.print("Device 0 Resolution: ");
  Serial.print(sensors.getResolution(insideThermometer), DEC); 
  Serial.println();

  Serial.print("Device 1 Resolution: ");
  Serial.print(sensors.getResolution(outsideThermometer), DEC); 
  Serial.println();
}

// function to print a device address
void printAddress(DeviceAddress deviceAddress)
{
  for (uint8_t i = 0; i < 8; i++)
  {
    // zero pad the address if necessary
    if (deviceAddress[i] < 16) Serial.print("0");
    Serial.print(deviceAddress[i], HEX);
  }
}

// function to print the temperature for a device
void printTemperature(DeviceAddress deviceAddress)
{
  float tempC = sensors.getTempC(deviceAddress);
  Serial.print("Temp C: ");
  Serial.print(tempC);
  Serial.print(" Temp F: ");
  Serial.print(DallasTemperature::toFahrenheit(tempC));
}

// function to print a device's resolution
void printResolution(DeviceAddress deviceAddress)
{
  Serial.print("Resolution: ");
  Serial.print(sensors.getResolution(deviceAddress));
  Serial.println();    
}

// main function to print information about a device
void printData(DeviceAddress deviceAddress)
{
  Serial.print("Device Address: ");
  printAddress(deviceAddress);
  Serial.print(" ");
  printTemperature(deviceAddress);
  Serial.println();
}

void loop(void)
{ 
  // call sensors.requestTemperatures() to issue a global temperature 
  // request to all devices on the bus
  Serial.print("Requesting temperatures...");
  sensors.requestTemperatures();
  Serial.println("DONE");

  // print the device information
  printData(insideThermometer);
  printData(outsideThermometer);
}

Тут вот эта строка отвечает за используемый пин

#define ONE_WIRE_BUS 10

Как вы знаете каждый датчик обладает уникальным адресом, и если у нас на шине висит допустим 2 датчика то есть 2 варианта к ним обратится

1 Это обращение к датчикам зная их адреса. Нужно раскомментировать строки

  //insideThermometer = { 0x28, 0x1D, 0x39, 0x31, 0x2, 0x0, 0x0, 0xF0 };
  //outsideThermometer   = { 0x28, 0x3F, 0x1C, 0x31, 0x2, 0x0, 0x0, 0x2 };

2 Обращение к датчикам через поиск, присваивая автоматически каждому найденному датчику индекс начиная с 0

  if (!sensors.getAddress(insideThermometer, 0)) Serial.println("Unable to find address for Device 0"); 
  if (!sensors.getAddress(outsideThermometer, 1)) Serial.println("Unable to find address for Device 1");

Вот как то так)

Arduino-ide-ds18b20-1

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *